

## SIOV metal oxide varistors

Equation overview

Date: January 2018

© EPCOS AG 2018. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

EPCOS AG is a TDK Group Company.



## Equation overview

| Equation no. |                                                                                                                                                                                                                                                                                           | Page |  |  |  |  |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|--|--|
| 1            | $I = K V^{\alpha} \qquad \qquad \alpha > 1$ $I \qquad \text{Current through varistor}$ $V \qquad \text{Voltage across varistor}$ $K \qquad \text{Ceramic constant (depending on varistor type)}$ $\alpha \qquad \text{Nonlinearity exponent}$ $(\text{measure of nonlinearity of curve})$ |      |  |  |  |  |  |
| 2            | $R = \frac{V}{I} = \frac{V}{KV^{\alpha}} = \frac{1}{K}V^{1-\alpha}$                                                                                                                                                                                                                       |      |  |  |  |  |  |
| 3            | $\log I = \log K + \alpha \log V$                                                                                                                                                                                                                                                         |      |  |  |  |  |  |
| 4            | $\log R = \log \left(\frac{1}{K}\right) + (1 - \alpha) \log V$                                                                                                                                                                                                                            |      |  |  |  |  |  |
| 5            | $\alpha = \frac{\log I_2 - \log I_1}{\log V_2 - \log V_1}$                                                                                                                                                                                                                                |      |  |  |  |  |  |
| 6            | $W = \int_{t_0}^{t_1} v(t)i(t)dt$                                                                                                                                                                                                                                                         |      |  |  |  |  |  |
| 7            | $ TC  < 0.5 \cdot 10^{-3}/K = 0.05\%/K = 1\%/\Delta 20K$                                                                                                                                                                                                                                  |      |  |  |  |  |  |
| 8            | $V_{SIOV} = \left(\frac{Z_{SIOV}}{Z_{source} + Z_{SIOV}}\right) V$                                                                                                                                                                                                                        |      |  |  |  |  |  |
| 9            | i* ≤i <sub>max</sub>                                                                                                                                                                                                                                                                      |      |  |  |  |  |  |
| 10           | $W^* \le W_{max}$                                                                                                                                                                                                                                                                         |      |  |  |  |  |  |
| 11           | $P^* \le P_{max}$                                                                                                                                                                                                                                                                         |      |  |  |  |  |  |
| 12           | $i^* = \frac{V_s - V_{SIOV}}{Z_{source}}$                                                                                                                                                                                                                                                 |      |  |  |  |  |  |
| 13           | $\tau \approx \frac{L}{R_{Cu} + R_{SIOV}} \left[ s \right] \hspace{1cm} \begin{array}{c} L & [H] & Inductance \\ R_{Cu} & [\Omega] & Coil \ resistance \\ R_{SIOV} & [\Omega] & SIOV \ resistance \ at \ operating \ current \end{array}$                                                 |      |  |  |  |  |  |
| 14           | $t^*_r = \frac{\int i^* dt}{\hat{i}^*}$                                                                                                                                                                                                                                                   |      |  |  |  |  |  |
| 15           | $\frac{t_{37\%}}{t_{50\%}} = \frac{I_n  0.37}{I_n  0.50} = \frac{-0.994}{-0.693} = 1.43 = \frac{\tau}{T_r}$                                                                                                                                                                               |      |  |  |  |  |  |
| 16           | $W^* = \hat{v}^* \hat{i}^* t^*_r$ $\begin{bmatrix} \hat{v}^* & [V] \\ \hat{i}^* & [A] \\ t^*_r & [s] \end{bmatrix}$                                                                                                                                                                       |      |  |  |  |  |  |
| 17           | $W^* = \frac{1}{2} \operatorname{L} i^{*2} $ [J] $\operatorname{L} [H]$ [A]                                                                                                                                                                                                               |      |  |  |  |  |  |
| 18           | $W_{\text{max}} = v_{\text{max}} i_{\text{max}} t_{\text{r max}}$                                                                                                                                                                                                                         |      |  |  |  |  |  |



## Equation overview

| Equation no. |                                                                                    |                        |                   |                             |                   | Page |
|--------------|------------------------------------------------------------------------------------|------------------------|-------------------|-----------------------------|-------------------|------|
| 19           | $P^* = \frac{W^*}{T^*} = \frac{v^* i^* t^*_r}{T^*} [W]$                            | W*<br>T*<br>v*         | [J]<br>[s]<br>[V] | i*<br>t* <sub>r</sub><br>P* | [A]<br>[s]<br>[W] |      |
| 20           | $T_{\min} = \frac{W^*}{P_{\max}}[s]$                                               | W*<br>P <sub>max</sub> | [J]               | T <sub>min</sub>            | [s]               |      |
| 21           | $\log V = b1 + b2 \cdot \log (I) + b3 \cdot e^{-\log (I)} + b4 \cdot e^{\log (I)}$ |                        |                   | l > 0                       |                   |      |
| 22           | $AVR = \frac{V^*}{V_{max}}$                                                        |                        |                   |                             |                   |      |
| 23           | $i_L = A + k\sqrt{t}$                                                              |                        |                   |                             |                   |      |
| 24           | $\lambda[\text{fit}] = \frac{10^9}{\text{ML[h]}}$                                  |                        |                   |                             |                   |      |